HINS H⁻ Beam Diagnostic Development and Test Facility

Vic Scarpine AAC Meeting November 16-17, 2009

Outline

- Motivation
- Roadmap
- Beam Diagnostic Projects
- Collaborations
- Goals and Timelines
- Conclusions

Motivation

- HINS (High Intensity Neutrino Source) is a unique Linac Injector R&D facility
 - Outside of HINS, regular access to high-intensity, low-energy H- beam for R&D is limited
- Potential exists to operate HINS as a low-energy, high-intensity Htest facility during Project X R&D phase
 - Allows for the development of Fermilab projects as well as a facility for external collaborators
 - An accessible test facility is critical for a number of Project-X R&D areas
- Potential project areas:
 - Beam diagnostics R&D
 - Beam dynamics at low-energy
 - Beam chopper R&D
 - Low-energy material studies

Roads to Test Facility

HINS Beam Parameters

Particle	H+ then H-	
Nominal Bunch Frequency/Spacing	325 3.1	MHz nsec
Particles per Pulse	37.5 *	E13
Pulse Length	3/1	msec
Average Pulse Current	~20	mA
Pulse Rep. Rate	2.5/10	Hz
Bunch Current	32	mA
Bunch Intensity	6.1 98	E8 pCoul

^{*} full un-chopped 3 msec pulse at klystron-limited 20 mA

Upcoming 6-Cavity Test

- To test vector modulator concept
- Two buncher cavities Quadrupole focusing instead of superconducting solenoids
- ~2.7 to 3.0 MeV protons
- Diagnostic line primarily for beam evaluation / phase evaluation

Movable Beam Diagnostics

The HINS linac is equipped with a reconfigurable, movable diagnostics station at the end of the linac

HINS Cave Layout

HINS beamline will evolve – diagnostics section will adapt to changes

Beam Diagnostic Projects for Project X

- Transverse Diagnostics
 - Laser Transverse Profile Monitor*
 - Ionization Profile Monitors
 - Electron Wire Transverse Profile Monitor
- Longitudinal Diagnostics
 - Laser Longitudinal Profile Monitor*
 - Wire Longitudinal Profile Monitor*
 - Broadband Faraday-cup*
- Halo Monitoring transverse and longitudinal
 - vibrating wire*
 - Laser wire*
- MEBT Emittance station
 - slit-collector*
 - Laser Slit*

^{*} Project X related instrumentation to be tested at HINS

Project X Collaborations

- Project X Collaboration Initiative (November 2008):
 - Interest on beam instrumentation collaboration projects from SNS, LBNL, and SLAC

SNS

- Various advanced diagnostics systems (broadband Faraday-cup, ebeam scanner, MEBT beam instrumentation, Allison scanner, laser wires, etc.)
- Support, information exchange, RD&D help, visits, reviews, etc., but no design or development activities

LBNL

- Development of a mode-locked fiber laser system for longitudinal bunch profile measurements (also bunch tails), distribution of laser light with fiber optics
 - Critical to use HINS at testing facility

SLAC

- Collaboration on a new, xTCA-based electronics platform (Controls).
- [potential collaboration for broadband chopper driver]

Basic Transverse Laser Profile Monitor (LPM)

- Profile measurements difficult in intense H- beams
 - Wire dangerous near superconducting cavities
- Use narrow laser to ionize H- and measure profile
 - H⁻ + photon -> H⁰ + e-
 - Collect electrons or measure reduction of H- current
- Collaboration formed between FNAL and BNL to produce LPM for HINS
 - Other groups, such as SNS, have also produced LPMs
- LPM demonstrated at BNL with beam and delivered to FNAL in summer of 2008
- Unit redesigned at FNAL and installed at end of FNAL linac during summer 2009 shutdown – 400 MeV H-
- Integration into HINS after H- source arrival

Fermilab Transverse Laser Profile Monitor

- Developed by BNL in collaboration with Fermilab
 - Tested with 750 KeV H- at BNL
- Laser Profile Monitor details
 - Q-switch laser
 - Laser energy: 50 mJoule
 - Wavelength: 1064 nm
 - Pulse length: 9 nsec
 - Fast rotating mirrors (±4º / 100 µsec)
 - e detector: scintillator & PMT
- Installation:
 - 1st Test with 400 MeV H⁻
 - Controller damaged by radiation?
 - HINS: 2.5 to 10 MeV

LBNL Laser Longitudinal Bunch Shape Proposal

Laser Transverse Emittance Monitor

- Best method to measure emittance when space charge effects are large is to use a scanning slit or pepper pot method
 - A low-energy, high-intensity beam will destroy any material in beam
 - Use a non-intercepting method to block beam
- Scan laser across bunch to act as a virtual slit to convert H- to H^o
- Collect electron to measure intensity in slit
- Measure angular distribution of H^o

Goals and Timelines

FY10

- Continue laser diagnostics collaboration with LBNL, and formalize collaborations with SNS and SLAC.
- Setup and commissioning of HINS basic beam instruments, e.g. beam intensity, orbit, phase, etc.
- Focus on Project X mission critical RD&D projects, e.g. laserwire, MEBT instrumentation, halo measurements, beam loss monitoring, and more.
 - Construct prototype systems

• FY11

- Install and test prototypes at HINS
- Summarize operation experience on some prototypes

• FY12

- Finalize design and development activities.
- Freeze designs, overall system layout.

Conclusion

- HINS beamline construction pathway gives an opportunity for Hbeam diagnostics development
 - 2.5-3.0 MeV H-
 - 10 MeV H-
- Project X beam diagnostics R&D can be performed using the HINS pulsed beam format
- HINS can provide a unique and critical test facility for low-energy high-intensity H- that is not readily available outside of Fermilab
- Operating HINS as a test facility, even after HINS goals are meet, is critical to Project X beam diagnostic instrumentation R&D phase